Dr. Yanjie Fu
Department of Computer Science
Missouri University of Science and Technology
Friday, Nov 30, 2018
11 AM - 12 PM
EB 3105
Abstract:
The pervasiveness of mobile, sensing, and IoT technologies have accumulated
large-scale spatial temporal behaviorial data of individual users and systems
in real time and at different locations from mobile devices and App services.
Such socio-spatio-temporal data have unprecedented and unique complexity. For
instance, they are mostly spatially-autocorrelated, temporally-dependent,
dynamically-networked, cross-domain, and semantically-rich. As a result, it is
difficult to make sense of spatiotemporal data.
In this talk, we first introduce why integrating representation learning with
spatiotemporal contexts can help. We then focus on (1) spatial representation
learning; (2) spatiotemporal representation learning; (3) their applications to
automated region profiling for urban planning and driving behavior analysis for
transportation safety. Finally, we conclude the talk and present our future
work.
Biography:
Dr. Yanjie Fu is an assistant professor in the Department of Computer Science
at the Missouri University of Science and Technology (University of
Missouri-Rolla), where he has been since 2016. He received his Ph.D. degree
from Rutgers, the State University of New Jersey in 2016, the B.E. degree from
University of Science and Technology of China in 2008, and the M.E. degree from
Chinese Academy of Sciences in 2011. He has research experience in industry
research labs, such as Microsoft Research Asia and IBM Thomas J. Watson
Research Center. He has published prolifically in refereed journals and
conference proceedings, such as IEEE TKDE, ACM TKDD, IEEE TMC, ACM TIST, ACM
SIGKDD, AAAI, IJCAI.
Dr. Fu's general interests are data mining and big data analytics, especially
(1) how analytical approaches alleviate information overload, heterogeneity,
and asymmetry and (2) what role modeling regulations play in exploring the
correlations among big data. His recent research focuses on applying
spatiotemporal social data mining, deep learning, collective learning, and
automated data science on big data problems including smart cities, geographic
analysis, wireless intelligence, user and system behavior analysis, recommender
systems.
Host:
Dr. Jiliang Tang