

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Early, code-free, design evaluation

#Target of evaluation

- very high level design, before "software design" methods start elaborating the box and line diagrams
- * evaluation that weighs costs as well as capabilities
- evaluation that recognizes user needs and preferences
- * evaluation that does not depend on access to code

*I*Long-term objective: framework to unify models

- * general, to handle models for various specific attributes
- * open-ended, esp. with respect to the aspects considered
- Ilexible, handling various levels of detail and precision

Model for predictive analysis of design

 $U(d, \theta) = B(x,\theta) - C(d,x,m) \text{ for } \{x : F(d,x,m)\}, \text{ where } x = P(d,m)$

Value U of design d to a client with preferences θ is benefit B net of cost C provided the desired result x is achievable and attributes x of implementation are predicted by P

Let	<i>d</i> be a design	in some appropriate notation
	x be in A^n	an open-ended vector of capabilities
	\boldsymbol{v} be in V^n	a multidimensional value space
	<i>m</i> be in some notation	a development method
	θ express user pref	a multidimensional utility space
	B express benefits	predicted value v of x to user with pref θ
	C express costs	$\cot v$ of getting <i>x</i> from <i>d</i> with method <i>m</i>
	F checks feasibility	whether d with x can be achieved with m
	P predicts capabilities	attributes x that m will deliver for d
		Institute for Software Research, International

RI

U(d) = B(x) - C(x) The value of a design is the benefit, net of cost, of the implementation as represented by its capabilities.			
Let <i>d</i> be a design <i>x</i> be in R ⁿ <i>v</i> be in R	in some appropriate notation an open-ended vector of capabilities value in dollars		
<i>B</i> express benefits <i>C</i> express costs	predicted value v of x to user cost v of getting or using x		

I(d) = B(x) - C(x))	where $x = P(d$
We often need to properties <i>x</i> before	edict the implement the code is written	n
Let d be a design x be in \mathbb{R}^n v be in \mathbb{R}	in some appropriate an open-ended vecto value in dollars	notation or of capabilities
<i>B</i> express benefits <i>C</i> express costs	predicted value v of cost v of getting x from v	<i>x</i> to user
P predicts capabilit	y capabilities x of imp	lementation of a

COCOMO Early 1	Design				
 Examine designation 	n to cour	nt func	tion po	oints	
			Con	nplexity L	evels
Туре		Ι	LOW	Average	High
Internal logical files			7	10	15
External interface files			5	7	10
etc					
* Choose progra	mming l	angua	ge	1.	
* Use pre-calibra	ited table	e to est	imate (code size	
Language	Ada 95	C++	Java	PERL	VB 5.0
			50	07	0.4

Tir	ne 🗲 Money
U(d) = B(x) - C(d,x,n)	<i>n</i>) where $x = P(d)$
Capabilities <i>x</i> and val may be measured o	lues v are multidimensional; they on different scales
Let <i>d</i> be a design	in some appropriate notation
x be in A^n	open-ended vector of arbitrary attributes
v be in V^n	open-ended vector of arbitrary attributes
<i>B</i> express benefits <i>C</i> express costs	predicted value v of x to user cost v of getting x from d with method m
P predicts capability	capabilities x that m will deliver for provide the second se

	Considering	development	method
U(d) = B(x) - C(x))	where $x = P(d,m)$
We ha as	don't have the coo ave to predict the i ssuming <i>d</i> is imple	le during early de implementation pr mented by metho	esign, so we roperties x ed m
Let	<i>d</i> be a design <i>x</i> be in R ⁿ <i>v</i> be in V ⁿ	in some appropriate a an open-ended vector a multidimensional v	notation r of capabilities <u>ralue sp</u> ace
	<i>m</i> be in some notatio	n a development m	nethod
	<i>B</i> express benefits <i>C</i> express costs	predicted value <i>v</i> of <i>x</i> cost <i>v</i> of getting <i>x</i> fro	r to user m <i>d</i> with method <i>m</i>
	P predicts capability	capabilities x that m x	will deliver for

A, B are calibrated to 161 projects in the database

EM_i and SF_j characterize project and developers
 TDEV is similar

Client-	-focused Value
$U(d,\theta) = B(x,\theta) - C(d,x,n)$	<i>i</i>) where $x = P(d, m)$
Most significantly, va relative to the needs stakeholder – in this	lue can only be reckoned s and preferences (utilities) of a s case, the client or user
Let <i>d</i> be a design	in some appropriate notation
<i>x</i> be in R ⁿ	an open-ended vector of capabilities
v be in V ⁿ	a multidimensional value space
<u><i>m</i> be in some notatio</u>	n a development method
heta express user pref	a multidimensional utility space
B express benefits	predicted value v of x to user with pref θ
C express costs	cost v of getting x from d with method m
P predicts capability	capabilities <i>x</i> that <i>m</i> will deliver for Institute for Software Research, International

Recall: COCOMO II Early Design Model

A, B are calibrated to 161 projects in the database

- * EM_i and SF_i characterize project and developers
- * TDEV is similar

S

Ex 11: Utility-based Adaptive Configuration

#Ubiquitous computing systems are resource-limited
Processor power, bandwidth, battery life, storage capacity, media fidelity, user distraction, ...
#Users require different capabilities at different times
#Chitng, email, viewing movies, mapping, ...
Ponamic preferences for quantity and quality of service
#Abstract capabilities can be provided by different combinations of services
*Specific editors, browsers, mailers, players, ...
#Use utility theory and linear/integer programming of find best sequence of configuration
#Abstract Capabilities (5th year PhD student)
*Papers in EDSER4, ICSE'04

*A*Security Attribute Evaluation Method (SAEM, Butler)
Elicit client's threat, asset protection priorities (θ)
Evaluate per-threat countermeasure effectiveness (x = P(d,m)) of candidate security technology to add (d)
Weight countermeasures by priorities (B(x,θ)) *A*Cognitive modeling for UIs (Keystroke, GOMS)
Design UI and select common tasks
Use cognitive model to predict task times (x = P(d,m)) *A*Real options to evaluate delayed decision
Additional cost now to preserve flexibility
Cost to exercise flexibility later *C*(d,x,m) expresses implementation and design cost now *B*(x,θ) expresses option value for exercising flexibility later

Is it sound?	No, it's light!
Is the model correct?	Maybe not, it's a first cut
Is it complete?	No, it's opportunistic
Is it universal?	No, it takes user view of value
Does it work?	Maybe. We'll see
So, is it useful?	We already think so
What does it not do?	Things that need code

